录取选题网 >工作计划

负数的认识教案7篇

我们可以通过与学生互动来调整教案,满足他们的需求,教案的制定需要细致的计划和思考,以确保课程的顺利进行,录取选题网小编今天就为您带来了负数的认识教案7篇,相信一定会对你有所帮助。

负数的认识教案7篇

负数的认识教案篇1

教学内容:

教材第3-4页的例3、例4,以及“试一试”、“练一练”,练习一第5-8题。

教学目标:

1.能在盈与亏、收与支、升与降、增与减及相反方向运动等现实的情境中准确地应用负数,进一步理解负数的意义。

2.通过用正数和负数表示一些具有相反意义的量,体会数学的应用价值。

教学重点:

在现实情境中应用负数,体验负数。

教学难点:

用正、负数表示相反方向的量,体验负数的意义。

教学过程:

一、自主准备

你知道生活中有哪些相反意义的量?试着举例用正数或负数来表示。

二、自主探究

1.阅读课本第3页的例3。从表中你能知道些什么?(大声地读一读,并说一说表中的数所表示的意义)

2.从例3的学习中,你知道( )和( )是一对具有相反意义的量,通常情况下,怎样用正数和负数来表示?

3.填写课本第3页的“试一试”。

4.阅读课本第3页的例4。思考:如何用图来表达学校、邮局、公园之间的相对位置?(在下面画一画)

5.如果把向东走2千米记作+2千米,那么向西走2千米可以记作什么?

6.在直线上用点表示邮局和公园的位置

看了上图,你有什么发现?

三、自主应用

1.电梯上升15米记作+15米,下降10米记作( )米,-20米表示电梯( )米。

2.公交车上的售票员将下车3人记作-3人,上车4人记作( )人,-5人表示( )人。

3.知识竞赛抢答的评分规定:答对一题得10分,记作+10分;答错一题扣10分,应记作( )分。王明答对12题,答错3题,他得了( )分。

四、自主质疑

你认为本节课应学会什么?你还有什么疑问?

负数的认识教案篇2

在一至四年级的数学教材里,“数与代数”领域主要教学整数的知识,这些整数都是自然数(0和正整数)。本单元教学负数,是过去小学数学里没有的内容。在小学数学里教学负数的知识(只涉及负整数的初步认识)出于两点考虑:第一,负数在日常生活中的应用还是比较多的,学生经常有机会在生活中看到负数。让他们学习一些负数的知识,有助于他们理解生活中遇到的负数的具体含义,从而拓宽数学视野。第二,适量知道一些负数的知识,扩展对整数的认识范围,能更好地理解自然数的意义。

?数学课程标准(实验稿)》对教学负数提出的具体目标是“在熟悉的生活情境中,理解负数的意义,会用负数表示一些日常生活中的问题”。根据这一教学目标,本单元的教学内容分两部分编排:第一部分是结合现实情境教学负数的意义,让学生初步认识负数,初步能认、读、写负数;第二部分是负数的实际应用,引导学生应用正数和负数表示日常生活中具有相反意义的数量,进一步体会负数的意义。练习一的第1~6题配合第一部分的教学,第7~10题配合第二部分的教学。“你知道吗”介绍我国古代认识和使用负数的情况。本单元结束时,还安排了一次实践活动《面积是多少》,回忆面积的意义、常用的面积单位、长方形面积计算公式,初步建立图形的等积变形思想,培养转化策略,为教学平行四边形等三个图形的面积打下扎实的基础。

1.联系温度和海拔高度的表示方法,初步教学负数的意义。

本单元教学负数的重点是理解它的意义,初步建立负数的概念。生活中有许多具有相反意义的数量,如上升与下降的距离、收入与支出的金额、盈余与亏损的数量……怎样用数学的方法清楚、简便地表示并区分这些具有相反意义的数量?于是人类发明了负数。这些既是负数产生的历史过程,也是教学负数时可采用的素材。本单元教学的第一部分,选择学生经常接触到的气温和具有形象特征的海拔高度为素材,帮助学生初步建立负数的概念。

(1)用负数表示低于零度的温度,学生首次感知负数。

例1精心选择三个城市同一天的最低气温,设计了“创设问题情境----讲解负数知识”的教学线索,让学生有意义地接受负数。教材分三个环节编写:第一是营造需要----用不同的数分别表示零上温度和零下温度;第二是讲解负数的知识,包括正数和负数的表示方法和读、写;第三是通过“试一试”巩固例题教学的知识。

教材通过精心选择的三个最低气温,营造教学负数的氛围。南京的最低气温刚好是0摄氏度,上海的最低气温是零上4摄氏度,北京的最低气温是零下4摄氏度。上海和北京的最低气温是两个不同概念的4摄氏度,怎样用数学的方法分别表示这两个温度,让人一看就明白而且不会发生混淆?这就是教学负数的氛围。为了营造这样的氛围,例题让学生联系各个城市图片右边的温度计说说“能知道些什么”,鼓励他们广泛地交流,包括看到的各个城市的具体气温以及由此想到的上海气温比0摄氏度高,北京气温比0摄氏度低等内容。由此在学生内心产生一种需要:寻找一种比较简便的方法,表示并区分上海与北京的不同气温。

教材把正数与负数结合在一起讲解,有利于突出负数的意义与表示方法,体会正数与负数分别表示具有相反意义的数量。先讲零上4摄氏度与零下4摄氏度分别记作+4℃和-4℃,让学生清楚地看到它们使用了不同的表示方法。再讲“+4”与“-4”的读法,并通过“+4也可以写成4”初步把以前学过的那些大于0的自然数与正数联系起来。

“试一试”让学生独立写出香港、哈尔滨、西宁三个城市某一天的气温,其中两个城市的气温用负数表示,一个城市的气温用正数表示。通过写出这些正数和负数,再次体会负数的意义,巩固在例题中教学的知识。

在教学用正数或负数表示温度的同时,还应教会学生看温度计上显示的温度。如温度计上同时表示摄氏温度与华氏温度,我们生活中经常使用的是摄氏温度,它的标记是“℃”。又如温度计上的零上温度要从零度刻度线往上看,每小格表示1度,每大格表示10度;温度计上的零下温度要从零度刻度线往下看,也是每小格表示1度,每大格表示10度。第7页第6题在温度计上表示某市2004年四个季度的平均气温,也是为了让学生学会看温度计而设计的。

(2)用正数或负数表示海拔高度,丰富对负数的感性认识。

例2用正数表示珠穆朗玛峰的海拔高度,用负数表示吐鲁番盆地的海拔高度。虽然学生缺乏海拔高度的知识,但“高于海平面”“低于海平面”等概念形象具体,有利于学生体会正数和负数分别表示具有相反意义的数量。例题采用“比海平面高”“比海平面低”这样的描述表达了珠穆朗玛峰和吐鲁番盆地的相对高度,用图画帮助学生理解词语的意思。图中把海平面用一条红色虚线凸现,这样,什么是比海平面高、什么是比海平面低,以及需要不同的数来表示和区分这两种数量就显而易见了。通过用+8844米表示海拔8844米,用-155米表示海拔负155米,学生又一次联系实际体会到正数与负数的意义,他们对负数的感性认识就更丰富了。

这道例题里没有讲+8844、-155的读法,这是考虑到学生在前一道例题中已经初步学习了正数与负数的读法,这里把读数的机会留给了学生。

(3)初步揭示正数与负数的概念。

通过两道例题以及“试一试”的教学,已经认识了+4、-4、19、-11、-7、+8844、-155等数。如果把这些数分成两类,那么可以把+4、19、+8844分在同一类,把-4、-11、-7、-155分在另一类。教材告诉学生像前一类这样的数都是正数,像后一类这样的数都是负数,初步揭示了正数与负数的概念。要注意的是,教材没有给正数、负数下定义,只是通过列举的方式让学生知道怎样的数是正数,怎样的数是负数。并联系零上温度、比海平面高的高度都可以写成正数,零下温度、比海平面低的高度都可以写成负数,支持正数与负数概念的形成。

第3页“练一练”第1题,先读一读题中的6个数,再把这些数分别填入正数或负数的集合圈里。可以在填写后让学生说一说,在两道例题里正数分别表示了什么样的数量,负数分别表示了什么样的数量,以加强对正数与负数的理解。第6页第3题在写出5个正数与5个负数之后,也可以对学生提出类似的要求。

教材中的“0既不是正数,也不是负数。正数都大于0,负数都小于0”这些知识不需要我们告诉学生,他们只要联系例题学习的体会完全能够自己得出,教学只要引一引就可以了。这些知识也不需要机械记忆,学生自己得出的知识能够记住,并通过这些知识进一步理解负数的意义。

2.在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。

本单元的第二部分以生活中常见的负数为教学内容,让学生体验并尝试在生活中应用负数,从而进一步理解负数的意义。

(1)两道例题设计了不同的教学方法。

例3呈现了一张反映新光服装店今年上半年每月盈亏情况的统计表,在“盈亏金额”栏里有正数,也有负数。教学任务是让学生了解正数与负数在这道例题中分别表示的具体意义,看着统计表里的数据逐一分析各个月是盈利还是亏损,具体的钱数各是多少。还可以分析这半年盈亏的整体状况,包括有几个月是盈余的,有几个月是亏损的……这道例题的教学方法是,先由教材告诉学生“通常情况下,盈利用正数表示,亏损用负数表示”这个规则,再由学生依据规则对统计表里的每个数据作出具体的解释。从而体会正数和负数可以分别表示盈与亏这两种具有相反意义的数量。

例4呈现的是一幅平面图,学校在平面图的中心,它的东、西两个方向2100米处分别是邮局和公园,南、北两个方向1240米处分别是少年宫和超市。这道例题的教学要求是让学生知道在相背运动时,如果一个方向行走的路程用正数表示,那么另一个方向行走的路程可以用负数表示。“开放”是这道例题的特点,表现在两点上。一是情境与问题有开放性。小华从学校出发,沿东西方向的大街走2100米,到了什么地方?这个问题有两个答案,即小华如果向东走,则到达邮局;如果向西走,则到达公园。同样,小华从学校出发,沿南北方向的大街走1240米,到达的地点也有超市或少年宫两种可能。二是解决问题的方法有开放性。在前面的几道例题中,用正数表示零上温度、高于海平面的高度、盈余金额,用负数表示零下温度、低于海平面的高度、亏损金额,这些几乎都是人们已经约定了的,在通常情况下大家都遵循这些表示的规则。在本例中,朝哪个方向行走的路程记作正数,朝哪个方向行走的路程记作负数,一般没有约定,而是在解决问题时临时规定的。如果把向东行走的米数记作正数,那么向西行走的米数就记作负数;也可以把向西行走的米数记作正数,那么向东行走的米数就记作负数。教材充分体现开放性的特点,首先是通过开放的问题情境:小华沿东西方向大街走2100米“到了什么地方”,沿南北方向大街走1240“可以到哪里”,在学生中引发争议,使他们感受到可以用正数和负数区别表示相反方向运动的路程。其次是允许并鼓励学生应用不同的表示规则。在小华沿东西方向的大街行走时,“如果把向东走2100米记作+2100米,那么向西走2100米记作-2100米。”为学生“把向西走2100米记作+2100米,向东走2100米记作-2100米”留出了空间。在小华沿南北方向的大街行走的问题中,要求学生“根据行走的方向和路程,分别写出一个正数和一个负数”,赋予他们按自己的意愿确定表示规则的机会与条件。这样,学生对正数与负数能分别表示具有相反意义的数量会有更深切的体验。

(2)两次“试一试”提出了不同的认知要求。

第4页的“试一试”里,告诉学生新光服装店去年下半年每个月的盈利或亏损的金额,让他们在盈亏的情境中应用负数知识,加强“盈利通常用正数表示,亏损通常记作负数”的印象。与例题相比,这次“试一试”在认知水平上没有提出更高的要求,仅是变换了思维的方向。例题是根据“表示规则”体会统计表里各个正数与负数的具体含义,“试一试”是应用规则把具体现象用正数或负数表示在统计表里。预计学生完成这次“试一试”一般不会有困难。

第5页的“试一试”对学生提出了两点要求:一是写出数轴上的点所对应的数,其中有正数,也有负数。通过写数与读数,尤其是数轴上正数与负数的位置,进一步体会正数与负数表示相反意义的数量,从而更好地理解负数的意义,巩固负数的知识。二是看一看并想一想,-2接近0还是接近2,在数轴上初步感受数序。和例题相比,在认知水平上提出了更高的要求,对各道例题教学的知识与思想方法适度地概括与提升。教学这次“试一试”,要对这两个问题作细致的思考:(1)怎样呈现数轴,使学生理解数轴上已有的0、1、2、4,以及-1、-2、-5等数的意义,有利于继续在方框里填出其他各数。(2)怎样帮助学生初步体会数的排列顺序。下面提供对这两个问题的教学设计,仅供参考。

“你会填一填、读一读吗”的教学可以分三步进行。首先出现数轴,在它的上面有许多间距都相等的点,其中一个点的下面写出数“0”。接着联系在例4中学到的用正数和负数表示相反方向运动的路程的经验(也可以联系其他例题中应用正、负数的经验),出现数轴上的其他已知数。如果从“0”点出发,向东走1步、2步、4步,到达的位置用数轴上“0”右边的点及相应的数1、2、4表示,那么向西走1步、2步、5步,到达的位置应该用“0”左边的点及相应的-1、-2、-5表示。给抽象的数以具体的含义,能帮助学生体会数轴上的点与数之间的对应关系。然后再让学生写出四个框里的数,并说说自己的思考。这样,学生不仅写出了这些数,还联系实际体会了这些数的意义。

联系数轴上的数初步体会数序也可以分三步进行。首先仔细观察数轴上“0”的左边和右边分别是什么样的数,联系“正数都大于0、负数都小于0”体会这样分布的合理性。然后仔细研究正数1、2、3……在数轴上的排列方向是从左往右,-1、-2、-3……在数轴上的排列方向是从右往左,也要联系实际体会这样排列的合理性。最后是观察数轴上的数,回答“-2接近0还是接近2”这个问题,并简单解释其理由。

(3)联系已有的知识与经验,在练习中继续体会正数与负数表示的具体对象。

练习一里继续扩展教学素材,让学生通过水位、升降机的上升与下降,在银行取款与存钱,公共汽车停靠时乘客的上车与下车等感兴趣、能接受的题材,丰富对负数的感性认识,更好地理解负数的意义。这些练习在编写上的共同点是,通过一个已知的数据显示用正数、负数表示的规则,让学生按这样的规则,把同一情境中其他的数分别记作正数或负数。要尽量让学生独立完成练习,一是通过自己读题,独立理解问题情境;二是仔细寻找,独立发现记作正数(或负数)的规则;三是独立完成练习后,交流写出的数以及写数时的思考。对少数有困难的学生,可以在体会“表示的规则”上给予适当的帮助。如第10题表格里“起点站”下面的“+21”表示上车的人数记作正数,起点站上车21人。

在每一道题完成以后,还可以组织学生说说,这道题里什么样的数量记作正数,什么样的数量记作负数,正数与负数在现实情境里表示的数量有什么不同,引导他们主动地体会负数的意义。

3.《面积是多少》让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算作比较充分的知识准备和思想准备。

实践活动《面积是多少》安排在平行四边形、三角形、梯形面积计算教学的前面,其任务主要有两个:一是复习并激活已经教学的面积知识,包括面积的意义、面积单位、长方形和正方形的面积公式等。二是让学生体会转化、估计等解决问题的策略,为主动学习其他图形的面积计算打基础。

(1)已有的知识对教学新知识的重要作用大家都很清楚,教材复习旧知不是让学生被动回忆,而是在一个个现实的情境中,主动从记忆中提取,通过解决问题使这些知识处于激活的状态。如,所有的问题都是求平面图形或物体表面的面积,势必会引起对面积概念的回忆;各个求面积的问题使用了不同的面积单位,这就复习了常用的面积单位;有些问题的解决归结到长方形、正方形面积的计算上,这些面积公式在应用中被激活了。

(2)转化作为一种策略包括两层内容:转化的方法和转化的意识。前者是操作层面上的技术,后者是思想层面上的体验。

第10页教学的转化方法是,对图形进行分解与组合(一个大图形可以分解成若干个小图形,这些小图形共同组合成大图形)、分割与移拼(先把一个不规则的图形进行分解,再移动其中一部分或几部分的位置,拼成一个比较规则的图形),在保持面积不变的前提下,实现形状的变化。教学的转化意识是,稍复杂的图形可以等积变形成较简单的图形,求积方法未知的图形可以变成求积方法已知的图形,转化是实现新旧知识相联系的手段,是探索新知识的途径。教材让学生通过解决新颖的、富有挑战性的问题,学习转化方法,体验转化思想,形成自己的策略。

在“分一分、数一数”里教学分解与组合进行图形转化的策略。教材通过问题“你能先把每个图形分成几块,再数一数吗”引导学生把较复杂的不规则图形转化成若干个长方形、正方形的总和。在“移一移、数一数”栏目里教学分割与移拼进行图形转化的策略,通过问题“怎样移动图形中的一部分,很快数出它的面积”既激活学生在前一个活动里初步获得的体验----把复杂的图形转化成长方形(或正方形),又明确指出这里的转化方法----移动图形中的一部分。

这两个活动的教学一般可以分两步进行:第一步是在教材的引导下,学生独立开展转化图形的活动,并数出(算出)图形的面积。第二步是组织学生交流,首先要交流各人的转化方法,让学生一方面体会转化的方法是多样的;另一方面体会各种转化方法有共同点,就是把复杂的图形变成长方形和正方形;还要交流把图形“分一分”“移一移”对计算它的面积起了什么作用。这样,学生得到的就不单是转化的方法,而且体验了转化对解决问题和数学学习的意义。

(3)通过数方格进行估计,也是一种计算图形面积的策略,特别对复杂的、不规则的曲线图形更显得有价值。第11页教材里有三点要引起教学的注意:第一,注意方法的指导。“数一数、算一算”的活动是求池塘的面积,教材先指导学生“把整格的和不满整格的分别涂上不同的颜色”,又指导学生“不满整格的都按半格计算”。前者能使数方格时避免遗漏和重复,从而减少错误,后者能使计算简便,很快得出结果。第二,注意对方法的反思和评价。在算出池塘的面积后,教材让学生反思“这样的算法合理吗”,并通过讨论评价这种方法。教学时可以把教材中的问题拆成两组问题进行反思和评价,先讨论“把整格的和不满整格的分别涂上不同的颜色”的目的是什么,让学生体会这样做的好处,从而变成自我需要、自觉行动。再讨论“为什么把不满整格的都按半格计算”,让学生体会不满整格的有小于半格和大于半格两种情况,把它们都按半格计算是比较合理的。第三,注意方法的发展和应用。“数一数、算一算”的活动还要数方格估计对称的树叶的面积,学生可以创造性地应用估计池塘面积的方法,先得出半片树叶的面积,再乘2得到整片树叶的面积。在“估一估、算一算”的活动里,继续估计其他树叶的面积和手掌的面积。为了便于学生估计,教材在最后的附页里提供了面积是1平方厘米的方格纸,学生不仅能用来完成教材中的练习,还可以结合自己的兴趣,进行更多的估计面积的活动。

负数的认识教案篇3

第一课时:

认识负数(一)

教学内容:

苏教版五年级数学下册 第一单元 p1—3 练习一 1—5题

教学目标:

1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。

3、体验数学与日常生活密切相关,、激发学生对数学的兴趣。

教学重点:

在现实情景中理解正负数及零的意义。

教学难点:

用正负数描述生活中的现象。

一、 教学例1

1、情境引入。

电脑播放天气预报片头

师:老师收集了某天四个城市的最低温度资料,并用温度计显示。

2、教学用正负数和0表示几个城市某一天的最低气温。

出示图片:香港19摄氏度

师:那一天香港的最低气温是多少度?

师:你是怎么看出来的?

老师介绍温度计的看法。

出示图片:上海3摄氏度

师:上海的气温是多少摄氏度?

出示图片:南京0摄氏度

师:南京呢?和上海比,南京的气温怎样?

出示图片:北京零下3摄氏度

师:和上海比,北京的气温怎么样?

同时出示上海、南京、北京三地的气温图片。

师:上海和北京的气温一样吗?

师:在数学上怎样区分零上3摄氏度和零下3摄氏度的呢?

3、介绍正负数的读写法。

师:规定零上3摄氏度记作+3摄氏度或3摄氏度,规定零下3摄氏度记作-3摄氏度。

教学正数和负数的读写法

师:“+3”读作正三,再写的时候,只要在3前面加一个“+”——正号,“+3”也可以写成3。“-3”读作负三,书写时,只要先写“-”——负号,再写3。(教师板书)

师:现在,我们可以说那一天上海的气温是+3℃,北京的气温是-3℃

4、练一练

(1)选择合适的数表示各地的气温

(2)小小气象记录员

二、 感知生活中的正数和负数。

1、认识海拔高度的表示方法

师:从上面的资料中可以看出,不同的地区有温差,在我国同一地区同一天也有很大的温差。

出示教科书上的“你知道吗”

2、练一练

三、描述正数和负数的意义

出示:+3,-3,40,-12,-400,-155,+8848

师:你能将这些数分分类吗?按什么分?分成几类?小组讨论。

师:象+3,40,+8848这样的数都是正数,像-3,-12,-400,-155这样的数都是负数。

师:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。

师:0是正数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。

练一练

1、先读一读,再把数填入适当的框内。

-5,+26,9,-40,-120,+203

正数 负数

2、每人写出5个正数和5个负数。

读出所写的数,并判断写的是否正确。

3、出示“你知道吗?——中国是最早使用负数的国家”

小结:今天这节课,你有哪些收获?

四、寻找生活中的正数和负数。

师:在生活中,在哪里见到过负数?

学生说出存折,电梯面板等等,并要求说明这些负数的意思

练习一 4

选择合适的温度连一连

冰箱中的鱼 水中的鱼 烧好的鱼

负数的认识教案篇4

教学目标:

1.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。

2.培养学生应用数学的能力。

3.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

教学重点:

初步认识正数和负数以及读法和写法。

教学难点:

理解0既不是正数,也不是负数。

教学准备:

多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反、我反、我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄式度(零下10摄式度)。

3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

b、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄式度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(p4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

五、联系生活,巩固练习:

1.练习一第2、3题:

2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。

3.讨论生活中的正数和负数

(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)

(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

六、课堂小结:

这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

负数的认识教案篇5

负数的意义

?教学过程】 课前谈话:

同学们,在我们生活中,存在着很多意义相反的现象,比如说……你能举出一些这样的现象吗?

一、用正号和负号记录相反意义的量

1.师:像这样相反的现象,在我们学校也是随处可见的,比如说:(出示班级人数变化表)你们班本学期的人数和上学期相比,发生了什么变化?其他班呢?指名说说。

有的班的人数……了,有的班的人数……了,人数增加和减少是一组表示相反意义的量,你觉得老师这样记录能把他们区分开来吗?那你有更好的方法进行记录吗?用你自己喜欢的方法记录。学生填表。

指名展示台上反馈,说说自己的想法。

师:你觉得哪一种是最具有数学味的?这样记录有什么好处? 是的,数学家们也喜欢采用这种既简洁又方便的方法来表示这样具有相反意义的量。而加号和减号在这里应该读作正号和负号,现在你会读这些数吗?谁来试一试?师带大家读。那我们就一起用正号和负号重新记录一下好吗?

2.师:现在你会用正号和负号来记录其他表示相反意义的量吗?(出示)一辆公共汽车经过某站台时有12人上车,7人下车。张阿姨二月份存入2900元,三月份取出1200元。

一个蓄水池夏季水位上升米,冬季水位下降米。可以怎么记录?

二、教学例题

1.师:老师收集了几个城市同一天的最低气温,我们一起来看一看:(出示城市图片和温度计)

放大温度计:这是什么?你会看温度计吗?怎么看?谁能来给我们介绍一下?(师借机说明℃和°f)

红色液柱显示:上海零上4℃

南京0℃

北京零下4℃ 师:上海的气温是多少?南京呢?北京呢?那我们可以怎么记录这三个城市的气温呢?(板书)+4℃也可以省略正号写成4℃,(师板书)那么负号可以省略吗?为什么? 2.师:还有三个城市的气温,你也来试着记录一下好吗? 出示:香港19℃

哈尔滨-11℃

西宁-7℃ 学生记录,展示台上反馈。

3.这一天南极的温度是—40℃,赤道的温度是40℃。

如果把我们的温度计分别拿到南极和赤道,会有什么反应呢?你能在温度计上画一画吗? 展示台上反馈。

4.出示例2:比海平面高8844米,通常称为海拔高度8844米,我们可以怎么记录?比海平面低155米呢?

师:我国最大的咸水湖——青海湖高于海平面3193米,可以怎么记录?世界最低最咸的湖——死海低于海平面400米呢?

某地的海拔高度是0米,你是怎么理解的? 5.练习一2

三、分类归纳

师总结:你们觉得这些数面熟吗?像……这样的数我们就叫它……(正数)是的,正数其实都是我们以前学过的数,那么这样的数呢?(都是负数),而负数是我们这节课刚认识的。(板书课题:认识负数)0呢?是什么数?师画出数轴。

负数是不是就只有这么几个呢?你能不能再举几个例子?说得完吗?那我们应该加上什么?(……)正数呢?

你在生活中有没有见到过负数?(浏览)

四、巩固练习1.p3练一练1 2.练习一5(增加:我国成功发射的神州六号飞船在太空中向阳面的温度为100℃以上,而背阳面却低于-100℃,但通过隔热和控制,太空舱内的温度始终保持在17-25℃,非常适宜宇航员工作。)

读了这些数,你有什么感受? 3.练习一4 4.实验中学对初三男生进行了引体向上的测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表: 2-1 0 3-2-3 1 0

你知道他们分别做了几个引体向上吗?

5.某食品厂生产的120g袋装方便面外包装上印有“(120±5)g”的字样,小明购买一袋这样的方便面,称一下发现只有117g,请问厂家有没有欺骗行为?为什么?

五、总结

负数的认识教案篇6

教学目标:

1、结合现实情境,了解正数、负数的意义,会用正数、负数表示一些日常生活中具有相反意义的量,能借助温度计比较正、负数的大小。

2、在用正数、负数描述生活中具有相反意义量的过程中,体会正数、负数的作用,感受数学与生活的联系,激发学习数学的兴趣。

教学重点:

理解正数、负数的意义,体现正数、负数与生活的紧密联系。

教具准备:

多媒体课件、卡片

教学设计:

一、开门见山,引入新课

你知道这节课我们学习什么知识吗?你是怎么知道的?通过这节课你想知道正负数的哪些知识?

这节课我们重点来解决这几个问题:

出示本课目标:

1、正数、负数怎么读、写?

2、怎样用正数、负数表示一些具有相反意义的量?

3、正数、负数和0的大小关系是怎样的?

揭示课题:这节课我们就来学习正数、负数的认识(板书课题)

二、创设情景,初步感知正、负数

1、用自己的方法记录三组数据

老师说几组数据,请你记在记录单上,注意你的记录一定要让别人看明白。(附:记录单如下)

教师叙述:

第一组数据:一支球队在比赛中,上半场进了3个球,下半场丢了2个球。

第二组数据:本学期,我们班转入2人,转走1人。

第三组数据:王阿姨做生意,一月份赚了4000元,二月份赔了2000元。

2、展示并交流

学生可能出现四种情况:(只写数字;数字前面写字;用符号;前面加正负号)。

师选择用文字表示的,用投影展示出来。

问:有没有与他不同的表示方法?学生会出示用符号表示的方法。

问:你为什么这样表示?

这两种记录方法否非常详细,你认为那种方法表示更好?为什么?当学生出现认为文字表示方法比较好的时候,我会这样引导:有的时候遇上不会写的字,或者出现错别字,采用这种文字表示,容易让别人错误的理解你的意思,所以,我们就采用不易理解错误的符号记录。

3、认识正负数

你们知道像+3这样的数叫什么吗?(正数)

观察正数,你发现了什么?(数字前面带了一个“+”)你会读吗?

生:读加三。

师导读:正三生齐读

象“—2”这样的数是什么数?(负数)

观察负数你发现了什么?(数字前面带了一个“-”)你会读吗?

生:负二生齐读

我们以前在什么地方见过“+、-”?(在加法算式和减法算式里)在数字前面,“+”是正号“-”是负号。

4、读统计单里的后面两组数据

5、抢读。-200、+3、8、-5、4、15、8、5、+5、4

问:请读出下面的数,并告诉大家你读的数是正数还是负数?(并分类贴于黑板相应位置)

师:15是什么数?15和前面的正数一样吗?你发现了什么?(15前面没有正号)这是为什么呢?(在表示正数时,正号可以省略不写)你会读这个数吗?

生:十五

你能总结出正数的读法吗?(读正数时,带“+”的,一定要读出“正”字;省略“+”的,这个“正”字也要省略不读。)

师:负号“-”,可以省略吗?为什么?

你能再说出一些负数吗?我们能说完吗?这说明什么?(负数的个数是无限的)正数的个数呢?

观察这些正、负数,正、负数可以是什么数?

正负数可以是整数,也可以是小数或分数。

三、联系生活,理解正、负数的运用

1、到中国的热极——新疆的吐鲁番去走走

我们刚认识了新朋友正负数,现在我们带着新朋友一起去美丽的新疆走走吧!(出示课件)

(!)吐鲁番素有“火洲”之称。夏季平均气温在38℃左右,盆地中心的气温达到49℃以上,有记录的地表气温达82℃。是中国最热的地方,堪称中国的“热极”

(2)“早穿皮袄午穿纱,围着火炉吃西瓜”说的是吐鲁番的日温差特别大。3月份日平均气温在零上13℃左右,日平均最低气温在零下3℃左右。

(3)四季温差也很大,夏季达到炎热的极致,但到冬季平均气温则降到零下10℃左右。

(4)吐鲁番盆地比海平面低155米,是我国地势最低的地方;而新疆天池则位于海平面以上8870米。

师:(1)出示课本信息窗的第二条信息,这些信息中的温度数据你能用正负数表示吗?(学生可能回答:零上温度用正数表示,零下温度用负数表示。)

为什么零上用+13,零下用-3表示呢?你是以什么为标准分的?学生讨论,让他们明白:0度是分界线

“0”刻度下面都表示什么温度?用什么数表示?“0”刻度上面都表示什么温度?用什么数表示?

那温度怎么用正、负数表示呢?“0”是正数还是负数?“0”上面是什么数?0和正数比较,你发现了什么?“0”下面是什么数?0和负数比较,你发现了什么?然后,在正数和负数的中间板书“0”)

(2)再次回到吐鲁番。它位于海平面以下155米,而新疆天池则位于海平面以上8870米,你能用正负数表示出这两个地方的位置吗?为什么这样表示?

这里的“海平面”相当于温度计里的哪个刻度?

(3)出示数轴:观察正负数的位置

这个数轴和我们以前见过的数轴一样吗?不一样在哪里?观察正负数的位置,你发现了什么?

总结:所有负数都比0小,正数都比0大。正数都比负数大。

2、正负数的其他运用

我们用正负数表示温度的高低、地势高低,还有刚上课时说到的进球、丢球、赚钱、赔钱,其实正负数还可以表示生活中许多这样相反的现象。

(1)如果上车12位乘客用+12表示,那么下车8位乘客用()表示。

(2)于老师家在学校北面1500米,可以表示为+1500米,那么刘晨家在学校南6000米,怎么表示?

(3)王叔叔三月份收入2000元,支出800元,用正负数怎样表示?

(4)一个仓库,周一进货1000吨,周二出货360吨,用正负数怎样表示?

思考:每一题中的两个量都是什么关系?

说明:描述具有相反意义的量,可以用正、负数表示。

3、带着疑惑和思考来看课本:p60-61、把重点知识用笔圈画下来。看完课本,你还有什么想说的吗?

四、巩固练习

1、完成课本自主练习1题和3题2、判断:

(1)海拔-155米表示比海平面低155米()

(2)温度0℃就是没有温度。()

(3)0大于所有的负数,正数大于负数()

(4)如果向南走记为正,那么-10米表示向东走10米。()

五、拓展知识

了解正、负数的历史课件出示史料,进一步了解负数的历史。中国是世界上最早认识和应用负数的`国家。早在2000多年前的《九章算术》中,就有正数和负数的记载。在古代人民生活中,以收入钱为正,以支出钱为负。在粮食生产中,以产量增加为正,以产量减少为负。古代的人们为区别正、负数,常用红色算筹表示正,黑色算筹表示负。而西方国家认识正负数则要迟于中国数百年。(生谈感受,思想教育。)听完介绍后你有什么感受?

六、课堂总结

这节课你有什么收获?你能用自己的语言描述你所理解的正数、负数吗?

板书设计:

正数、负数的认识

负数的认识教案篇7

教学内容

六年级(下册)第1~3页的例1、例2

教学目标

1、知识技能:了解正数与负数是实际生活需要的,会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。

2、数学思考:通过正负数的教学,培养数感,渗透对立、统一的辩证思想。

3、问题解决:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。

4、情感态度:从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。提高学习数学的兴趣。

教学重难点

在现实情境中初步认识负数的意义;用正负数描述生活中的一些简单的具有相反意义的量。

教具准备

多媒体课件。

教学过程

一、自主创造,初知正负数

1.情景引入。

用最简捷的方式记录这些信息。(师叙述,生记录。)

①1路公共汽车在昆山宾馆站上来2位乘客,到亭林站下去2位乘客。

②本学期咱们五年级转来25名新同学,转走16名同学。

③小明妈妈投资股票,四月份赚了6000元,五月份亏了2000元

?设计意图:以现实生活素材为教学切入口,创设一种具体的生活情境展开教学,凸现数学知识源于生活的理念。同时,在记录数据的'过程中,让学生因为需要而思考,因为思考而创造。】

2、揭示课题

+2、-2前面的+叫做正号、-叫做负号,正号和负号与以前学的加减号写法相同,但表示的意义却有所区别。今天我们就来学习用正数和负数表示意思相反的量。二、沟通联系,再识正负数

1.教学例1

(1)情景呈现。

师:五(2)班的孩子,刚在外面上完一节体育课,外面可真热呀!(课件出示32℃温度计),下课后他们喜滋滋地吃起了冷饮(出示0℃),这些冷饮是工人叔叔从冰库里搬出来的(出示温度-23℃)

?设计意图:利用信息技术资源丰富、时效性强的特点,改变教材中提供冬天气温的例题,使学生的学习内容更加丰富多彩】

(2)师:这三种温度各是多少?根据刚才的学习,可以怎样表示这些温度?

板书:0℃、+32℃、-23℃

哪种温度最高?

(3)师:在读出刚才三个温度时,要注意看清什么?

小结:要找准0℃,它正好是零上温度和零下温度的分界点。零上温度可以用正数表示,零下温度可用负数表示。

?设计意图:让学生先读数,再说说读数后的感受,培养了学生的数感。】

2.归纳正数、负数和0的关系。

师:瞧,黑板上有这么多正数、负数朋友了,谁来把他们分一分?

归纳:正数都大于0,负数都小于0.0既不是正数,也不是负数(完成板书:负数正数)。

二、读读写写,掌握正负数

1.读两个海拔高度,请同学们互相读一读。

2.读温度,先自己读一读,你们会把这些温度从高排到低吗?

3.写几个正数和负数

?设计意图:充分挖掘习题功能,在展示学生个性化表达的同时,巧妙地运用信息化环境,引出正数和负数的对应关系,体会正数和负数时无限的】

三、链接生活,应用正负数

1.提问:在生活中你们遇到过用正负数表示的事情吗?

(1)存折(课件展示)

师:这里的-600是什么意思?

(2)刘翔在美国尤金精英赛中,110米栏的成绩是13.23秒,当时赛场风速为每秒-0.4米。

讨论:风速怎么会有负的?

如果风速是+0.4米,你认为比赛的成绩会怎样?

2.多媒体介绍负数的产生史。

?设计意图:把数学知识从课外移入课内,开阔了学生的视野,丰富了课余知识】

教材分析:负数是在学生已经认识了自然数、并初步认识了分数和小数的基础上,结合熟悉的生活情景,来初步认识负数。学习这部分内容,可以拓展学生的数概念,培养数感,也有助于培养学生的应用意识,提高学生运用数学认识世界和解决实际问题的能力。教材是根据学生已有的生活经验,选用气温和温度计这两个熟悉的情境,意在让学生感受负数与生活之间的联系,并没有复杂的概念与计算,知识层次比较浅。

会计实习心得体会最新模板相关文章:

认识蛋幼儿教案优质6篇

15的认识教案通用7篇

认识椭圆中班教案8篇

认识蛋幼儿教案6篇

会计专业认识与心得体会7篇

我认识的雪作文最新8篇

我认识的雪作文模板8篇

我认识的雪作文通用5篇

我认识的雪作文推荐6篇

我认识的x作文优秀6篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    52233

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。