录取选题网 >工作计划

解直角三角形教案5篇

为了让教案更具吸引力,教师可以运用多媒体和互动技术,教案的设计能够帮助教师有效地引导学生进行批判性思考,培养他们的分析能力,下面是录取选题网小编为您分享的解直角三角形教案5篇,感谢您的参阅。

解直角三角形教案5篇

解直角三角形教案篇1

一、新课导入

1.课题导入

如图是意大利的比萨斜塔,设塔顶中心点为b,塔身中心线与垂直中心线的交点为a ,过b点向垂直中心线引垂线,垂足为c,在rt△abc中,∠c=90°,bc=5.2米,ab=54.5米,你能根据上述条件求出图中∠a的度数吗?这就是我们这节课要研究的问题.

2.学习目标

(1)知道解直角三角形的概念,理解直角三角形中除直角以外的五个元素之间的关系.

(2)能综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.

3.学习重、难点

重点:直角三角形中除直角以外的五个元素之间的关系,解直角三角形.

难点:合理选用三角函数关系式解直角三角形.

二、分层学习

1.自学指导

(1)自学内容:教材p72~p73例1上面的内容.

(2)自学时间:8分钟.

(3)自学要求:完成探究提纲.

(4)探究提纲:

①在直角三角形中,已知有一个角是直角,我们把由直角三角形中的已知元素求出其余未知元素的过程,叫做解直角三角形.

②在直角三角形中,除直角外的`五个元素之间有哪些关系?

28.2.1解直角三角形课文练习

基础题

知识点1 已知两边解直角三角形

1.在△abc中,∠c=90°,ac=3,ab=4,欲求∠a的值,最适宜的做法是( )

a.计算tana的值求出

b.计算sina的值求出

c.计算cosa的值求出

d.先根据sinb求出∠b,再利用90°-∠b求出

《28.2.1解直角三角形》基操训练

第一层次学习

1.自学指导

(1)自学内容:教材p76例5.

(2)自学时间:10分钟.

(3)自学方法:独立探索解题思路,然后同桌之间讨论,写出规范的解题过程.

(4)自学参考提纲:

①如图,一艘海轮位于灯塔p的北偏东65°方向,距离灯塔80海里的a处,它沿正南方向航行一段时间后,到达位于灯塔p的南偏东34°方向上的b处,这时,海轮所在的b处距离灯塔p有多远?(结果取整数,参考数据:cos25°≈0.91,sin25°≈0.42,tan25°≈0.47,sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)

解直角三角形教案篇2

教学目标:理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高分析问题、解决问题的能力.

教学重点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形.

教学难点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形,提高分析问题、解决问题的能力.

教学过程:

一、课前专训

根据条件,解下列直角三角形

在rt△abc中,∠c=90°

(1)已知∠a=30°,bc=2;

(2)已知∠b=45°,ab=6;

(3)已知ab=10,bc=5;

(4)已知ac=6,bc=8.

二、复习

什么叫解直角三角形?

三、实践探究

解直角三角形问题分类:

1、已知一边一角(锐角和直角边、锐角和

斜边);

2、已知两边(直角边和斜边、两直角边).

四、例题讲解

例1如图,在△abc中,ac=8,∠b=45°,∠a=30°.求ab.

例2如图,⊙o的半径为10,求⊙o的内接正五边形abcde的边长(精确到0.1).

五、练一练

1.在平行四边形abcd中,∠a=60°,ab=8,ad=6,求平行四边形的面积.

2.求半径为12的圆的内接正八边形的边长(精确到0.1).

六、总结

通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.

七、课堂练习

1.等腰三角形的周长为,腰长为1,则底角等于_________.

2.rt△abc中,∠c=90°,∠a=60°,a+b=+3,解这个直角三角形.

3.求半径为20的`圆的内接正三角形的边长和面积.

八、课后作业

1.如图,在菱形钢架abcd中,ab=2 m,∠bad=72,焊接这个钢架约需多少钢材(精确到0.1m)

2.思考题(选做):如图,cd切⊙o于点d,连接oc,交⊙o于点b,过点b作弦ab⊥od,点e为垂足,已知⊙o的半径为10,sin ∠cod=,求:(1)弦ab的长;(2)cd的长.解直角三角形(1)

解直角三角形教案篇3

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程

一、复习引入,输入并贮存信息

1.提问:如图,在rt△abc中,∠c=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠a、∠b有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点c,测得同顶的仰角为30°,向山沿直线 前进20为到d处,再测山顶a的仰角为60°,求山高ab。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求ab可以解rt△abd和

rt△abc,但两三角形中都不具备直接条件,但由于∠adb=2∠c,很容易发现ad=cd=20米,故可以解rt△abd,求得ab。

⑶解题过程,学生练习。

⑷思考:假如∠adb=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点c,测得山顶a的仰角为30°,向山沿直线前进20米到d处,再测山顶a的仰角为45°,求山高ab。

分析:

⑴在rt△abc和rt△abd中,都没有两个已知元素,故不能直接解一个三角形来求出ab。

⑵考虑到ab是两直角三角形的直角边,而cd是两直角三角形的直角边,而cd均不是两个直角三角形的直角边,但cd=bc=bd,启以学生设ab=x,通过 列方程来解,然后板书解题过程。

解:设山高ab=x米

在rt△adb中,∠b=90°∠adb=45°

∵bd=ab=x(米)

在rt△abc中,tgc=ab/bc

∴bc=ab/tgc=√3(米)

∵cd=bc-bd

∴√3x-x=20 解得 x=(10√3+10)米

答:山高ab是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及cd,例1中 ∠2=2∠1 求ab,则需解rt△abd例2中∠2≠2∠1求ab,则利用cd=bc-bd,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔cd为m米,从地上一点测得塔顶c的仰角为∝,塔底d的仰角为β,求山高bd。

练习2:如图,海岸上有a、b两点相距120米,由a、b两点观测海上一保轮船c,得∠cab=60°∠cba=75°,求轮船c到海岸ab的距离。

练习3:在塔pq的正西方向a点测得顶端p的

仰角为30°,在塔的正南方向b点处,测得顶端p的仰角为45°且ab=60米,求塔高pq。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的rt△abd翻折180°,即可得图6;将基本图形4中rt△abd绕ab旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是ab=ab;练习2的等量关系是ad+bd=ab;练习3的等量关系是aq2+bq2=ab2

五、作业布置,反馈信息

?几何》第三册p57第10题,p58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

解直角三角形教案篇4

一、教学目标

(一)知识教学点

巩固用三角函数有关知识解决问题,学会解决坡度问题。

(二)能力目标

逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。

(三)德育目标

培养学生用数学的意识,渗透理论联系实际的观点。

二、教学重点、难点和疑点

1.重点:解决有关坡度的实际问题。

2.难点:理解坡度的有关术语。

3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。

三、教学过程

1.创设情境,导入新课。

例 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图

水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡ab的坡度i 1∶3,斜坡cd的坡度i=1∶2.5,求斜坡ab的坡面角α,坝底宽ad和斜坡ab的长(精确到0.1m)。

同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的'术语坡度、坡角等他们都不清楚。这时,教师应根据学生想学的心情,及时点拨。

通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义。

解直角三角形教案篇5

1、教学目标

1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;

2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;

3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

2、学情分析

本班学生对前面学过的三角函数基本知识点掌握较好,可以继续进行新授课。

3、重点难点

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.

4、教学过程

4.1第一学时

教学活动

活动1

【导入】课前预习

活动2

【导入】完成以下题目

1、在直角三角形abc中,∠c=90°,a、b、c、∠a、∠b这五个元素之间有哪些等量关系呢?

(1)边角之间关系:sina=_cosa=_tana=_cota=__

(2)三边之间关系:勾股定理_______

(3)锐角之间关系:________。

2、在rt△abc中,∠c=90°,ab=13,ac=12,求∠a的各个三角函数值。

3、自述30°、45°、60°角的正弦、余弦、正切、余切值。

4、在rt△abc中,∠c=90°,已知c=15,∠b=60°,求a.

5、在rt△abc中,∠c=90°,已知∠a=45°,b=3,求c.

你有哪些疑问?小组交流讨论。

生甲:如果不是特殊值,怎样求角的度数呢?

生乙:我想知道已知哪些条件能解出直角三角形?

◆师:你有什么看法?

生乙:从课前预习看,知道了特殊的一边一角也能解,那么两边呢?两角呢?还有三边、三角呢?

◆师:好!这位同学不但提的问题非常好,而且具有非凡的观察力,那么他的意见对不对?这正是这一节我们要来探究和解决的:怎样解直角三角形以及解直角三角形所需的条件。

◆师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的问题了,这节课我们就来学习“解直角三角形”,解决同学们的疑问。

设计意图:数学知识是环环相扣的,课前预习能让学生为接下来的学习作很好的铺垫和自然的过渡。带着他们的疑问来学习解直角三角形,去探索解直角三角形的条件,激发了他们研究的兴趣和探究的激情。

【探究新知】

例1、在rt△abc中,∠c=90°,由下列条件解直角三角形:

已知a=5,b=

◆师:(1)题目中已知哪些条件,还要求哪些条件?

(2)请同学们独立思考,自己解决。

(3)小组讨论一下各自的解题思路,在班内交流展示。

▲解(1)利用勾股定理,先求得c值.由a=c,可得∠a=30°,∠b=60°。

(2)由勾股定理求得c后,可利用三角函数tanb=

=,求得∠b=60°,两锐角互余得∠a=30°。

(3)由于知道了两条直角边,可直接利用三角函数求得∠a,得到∠b,再通过函数值求c 。

◆师:通过上面的例子,你们知道“解直角三角形”的含义吗?

学生讨论得出“解直角三角形”的含义(课件展示):“在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。”

(学生讨论过程中需使其理解三角形中“元素”的内涵,即条件。)

设计意图:让学生初步体会解直角三角形的含义、步骤及解题过程。通过展示他们的思路让他们更好的体会已知直角三角形的两条边能解出直角三角形。

◆师:上面的例子是给了两条边,我们求出了其他元素,解决了同学们的一个疑问。

那么已知直角三角形的一条边和一个角,这个角不是特殊值能不能解出直角三角形呢?以及学习了解直角三角形在实际生活中有什么用处呢?

带着这些疑问结合实际问题我们来学习例2:(课件展示例2涉及的场景--虎门炮台图,让同学们欣赏并思考问题)学习了之后,你就会有很深的体会。

学习例2:(课件展示涉及的场景--虎门炮台图)

例2:

如图,在虎门有东西两炮台a、b相距20xx米,同时发现入侵敌舰c,炮台a测得敌舰c在它的南偏东40°的方向,炮台b测得敌舰c在它的正南方,试求敌舰与两炮台的距离(精确到1米)。

总结(1)由∠dac=40°得∠bac=50°,用∠bac的三角函数求得bc≈2384米,ac≈3111米。

(2)由∠bac的三角函数求得bc≈2384米,再由勾股定理求得ac≈3112米。

学生讨论得出各法,分析比较(课件展示),得出——使用题目中原有的条件,可使结果更精确。

设计意图:(1)转化的数学思想方法的应用,把实际问题转化为数学模型解决

(2)巩固解直角三角形的定义和目标,初步体会解直角三角形的方法——直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”

交流讨论;归纳总结

◆师:通过对上面例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(几个学生展示)

学生讨论分析,得出结论。

◆师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?

学生交流讨论归纳(课件展示讨论的条件)

总结:解直角三角形,有下面两种情况:(其中至少有一边)

(1)已知两条边(一直角边一斜边;两直角边)

(2)已知一条边和一个锐角(一直边一锐角;一斜边一锐角)

设计意图:这是这节课的重点,让学生归纳和讨论,能让他们深刻理解解直角三角形的有几种情况,必须满足什么条件能解出直角三角形,给学生展示的平台,增强学生的`兴趣及自信心。

【知识应用,及时反馈】

1、在rt△abc中,∠c=90°,已知ab=2,∠a=45°,解这个直角三角形。(先画图,后计算)

2、海船以30海里/时的速度向正北方向航行,在a处看灯塔q在海船的北偏东30°处,半小时后航行到b处,发现此时灯塔q与海船的距离最短,求(1)从a处到b处的距离(2)灯塔q到b处的距离。

(画出图形后计算,用根号表示)

设计意图:使学生巩固利用直角三角形的有关知识解决实际问题,考察建立数学模型的能力,转化的数学思想在学习中的应用,提高学生分析问题、解决问题的能力。以及在学习中还存在哪些问题,及时反馈矫正。

【总结提升】

让学生自己总结这节课的收获,教师补充、纠正(课件展示)。

1、“解直角三角形”是由直角三角形中已知的元素求出未知元素的过程。

2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。

3、解直角三角形的方法:

(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);

(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切、余切;

(3)已知一个锐角求另一个锐角时,用两锐角互余。

选用关系式归纳为:

已知斜边求直边,正弦余弦很方便;

已知直边求直边,正切余切理当然;

已知两边求一边,勾股定理最方便;

已知两边求一角,函数关系要选好;

已知锐角求锐角,互余关系要记好;

已知直边求斜边,用除还需正余弦,

计算方法要选择,能用乘法不用除。

设计意图:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题。

【达标测试】:

1、在rt△abc中,∠c=90°,∠a=60°,bc=1,则ab=_____

2、等腰三角形中,腰长为5cm,底边长8cm,则它的底角的正切值是

3、在正方形网格中,的位置如右图所示,则的值为__________

设计意图:(1)是基本应用.(2)是在三角形中的灵活应用.(3)是变形训练.考察学生对知识的认知和应用程度。

【课后延伸】:xxx

会计实习心得体会最新模板相关文章:

认识五小班教案教案5篇

下科学教案教案通用5篇

幼儿美术教案教案优质5篇

健康教案我爱护牙齿教案5篇

找朋友教案小班游戏教案5篇

端午节教案教案优质5篇

小班教案垃圾分类教案5篇

中班幼儿教案音乐教案优秀5篇

幼儿美术教案教案通用5篇

幼儿美术教案教案推荐5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    87309

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。